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VIL. On the Theory of Local Probability, applied to Straight Lines drawn at random in
a plane ; the methods used being also extended to the proof of certain new Theorems
in the Integral Calculus. By MoreaN W. CrorroN, B.A., of the Royal Military
Academy, Woolwich ; late Professor of Natural Philosophy in the Queen’s University,
Ireland. Communicated by J. J. SYLVESTER, F.R.S.
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1. Tue new Theory of Local or Geometrical Probability, so far as it is known, seems to
present, in a remarkable degree, the same distinguishing features which characterize
those portions of the general Theory of Probability which we owe to the great philo-
sophers of the past generation. The rigorous precision, as well as the extreme beauty
of the methods and results, the extent of the demands made on our mathematical
resources, even by cases apparently of the simplest kind, the subtlety and delicacy of
the reasoning, which seem peculiar to that wonderful application of modern analysis—
ce calcul délicat, as it has been aptly described by LAPLACE—reappear, under new forms,
in this, its latest development. The first trace which we can discover of the Theory of
Local Probability seems to be the celebrated problem of Burrox, the great naturalist *—
a given rod being placed at random on a space ruled with equidistant parallel lines, to
find the chance of its crossing one of the lines. Although the subject was noticed so
early, and though Burrox’s and one or two similar questions have been considered by
LAVLACE, no real attention seems to have been bestowed upon it till within the last few
years, when this new field of research has been entered upon by several English mathe-
maticians, among whom the names of SYLVESTER and WoOLHOUSE} are particularly

* The mathematical ability evinced by BurroN may well excite surprise; that one whose life was devoted
to other branches of science should have had the sagacity to discern the true mathematical prineiples involved
in a question of so entirely novel a character, and to reduce them correctly to calculation by means of the inte-
gral calculus, thereby opening up a new region of inquiry to his successors, must move us to admiration for a
mind so rarely gifted.

+ Many remarkable propositions on the subject, by these eminent mathematicians, have appeared in the
mathematical columns of the ¢ Educational Times’ and other periodicals. A very important principle has been
introduced by Professor Syrnvesrer, which may be termed decomposition of probabilities. For instance, he has

shown that the probability of a group of three points, taken at random within a given triangle, fulfilling a given

intrinsic condition (i. ¢. one depending solely on the internal relations of the points among each other), may be
expressed as a linear function of two simpler probabilities; viz. that of the same condition being fulfilled
(1) when one of the points is fixed at a vertex of the triangle, and a second restricted to the opposite side ;
(2) when all three points are restricted, one to each side of the triangle. The order of the integrations required
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182 MR. M. W. CROFTON ON THE THEORY OF LOCAL PROBABILITY.

distinguished. It is true that in a few cases differences of opinion have arisen as to the
principles, and discordant results have been arrived at, as in the now celebrated three-
point problem, by Mr. " WooLHOUSE, and the four-point problem of Professor SYLVESTER ;
but all feel that this arises, not from any inherent ambiguity in the subject matter, but
from the weakness of the instrument employed; our undisciplined conceptions of a
novel subject requiring to be repeatedly and patiently reviewed, tested, and corrected by
the light of experience and comparison, before they are purged from all latent error.

The object of the present paper is, principally, the application of the Theory of Pro-
bability to straight lines drawn at random in a plane; a branch of the subject which
has not yet been investigated. It will be necessary to begin by some remarks on the

- general principles of Local Probability. Some portion of what follows I have already
given elsewhere*.

2. The expression “ af random” has in common language a very clear and definite
meaning ; one which cannot be better conveyed than by Mr. WILsoxN’s expression
“ gecording to no law.” It is thus of very wide application, being often used in cases
altogether beyond the province of mathematical measurement or calculation.

In Mathematical Probability, which consists essentially in arithmetical calculation,
when we speak of a thing of any kind taken at random, there is always a direct refer-
ence to the assemblage of things to which it belongs and from which it is taken, at
random,—which here comes to the same thing as saying that any one is as likely to be
taken as any other. When we have a clear conception of what the assemblage is, from
which we take, and not till then, we can proceed to sum up the favourable cases.

In many problems on probability there is no difficulty in forming a clear conception
of the total number of cases. Thus if balls are drawn from an urn, the number of cases
is the number of balls, or of certain combinations of them ; and if the number of balls
be supposed infinite, no obscurity arises from this. But there are several classes of
questions in which the totality of cases is not merely infinite, but of an inconceivable
nature. Thus if we try to imagine how to determine completely by experiment the
probability of a hemisphere thrown into the air falling on its base, we may suppose an
infinite number of persons to make one trial each; afterwards we may suppose each
person to make two, three, or an infinite number of trials; again, we may suppose for
every trial that has taken place an infinite number of others, varying, for instance, in
the substance, size, &c. of the body employed; and so on. We can thus continually
suppose variations of the experiment, each variation giving a new infinity of cases-
Now problems of this nature are treated by means of the following principle :—

In any question of probability regarding an infinite number of cases, all equally pro-

18 thus reduced by three. The same method applies to any polygon, and also to the points taken in space within
a tetrahedron. It is to be hoped that Professor Syrvmster will give these remarkable results to the public in a
detailed form : a general account of them was given to the British Association at Birmingham in 1865.

* Fducational Times, May 1867,
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bable, the result will be unaltered if we take, instead of these cases, any lesser infinity
of cases, chosen at random from among them*.

3. The case of a point or straight line taken at random in a plane or in space is a
problem of the above description. Thus, if a point be taken at random in a plane, the
total number of cases is of an inconceivable nature, inasmuch as a plane cannot be filled
with mathematical poin‘ts, any infinitesimal element of the plane containing an unlimited
number of points. We see, however, by means of the above principle, that we may
consider the assemblage we are dealing with, as an infinity of points all taken at random
in the plane.

Let us examine the nature of this assemblage. As the points continue to be scattered
at random over the plane, their density tends to become uniform. It is evident, in fact,
that a random point is as likely to be in any element dS of the surface, as in any equal
element dS'; and therefore by continuing to multiply points, the number in dS will be
equal (or subequal, to use a term of Professor DE MoRreANS) to that in dS'. Of course,
though the density tends to become uniform, the disposition of the points does not tend
to become symmetrical; those within any element dS will be dispersed in the most
irregular manner over that element}. However, it is important to remark that, for all
purposes of calculation, the ultimate disposition may be supposed symmetrical; for as
the position of any point is determined by that of the element dS, within which it falls,
it matters not what arbitrary arrangement we assume for the points within the element.

* This proposition, of which, in a somewhat different form, a mathematical demonstration is given by
Larrace (Théorie Analytique des Probabilités, chap. 3), may be regarded as almost axiomatic. Thus, suppose
an urn to contain an infinite number of black and white balls, in the proportion of 2 to 8; if any lesser infinite
number of balls be drawn from it, the black ones among them will be to the white as 2 to 8. For, imagine all
the balls ranged in a row ACB, the black from A to C, the white from C to B; if we now select an infinite
number at random from among them, it appears self-evident that, if the line be divided into five equal parts, the
numbers of balls taken from each part will be the same, or rather, will fend to equality on being increased inde-
finitely. Hence the black balls selected will be to the white as AC to OB, or as 2to3. When the numbers are
large, but not infinite, this principle is approximately true, and forms, as is well known, the basis of most of the
practical applications of Probability. Thus the chance of an infant living to the age of twenty is as truly found
from, say, 1,000,000 of observed cases, as it would be from the total number. _

In its strict mathematical form, the proposition may be thus stated :—In any unlimited number of cases,
divided into favourable and unfavourable, if p be the ratio of the favourable to the whole number of cases, and
if we select any infinite number of cases at random from among them, the probability is infinitely small, that the
same ratio, as determined from the selected cases, shall differ from p by a finite quantity.

4 Order thus results from disorder, the uniform density of the aggregate being unaffected by the disorder and
irregularity of arrangement of its ultimate constituents; much as a nebula of uniform brightness is related to
the stars which compose it. This remarkable law is to be traced, under one form or another, in most of the
applications of the Theory of Probability.

« Rlle mérite Pattention des philosophes, en faisant voir comment la regularité finit par s’établir dans les
choses méme qui nous paraissent entiérement livrées au hasard.”— Laplace.

A familiar illustration of the tendency to uniform density in the random points may be derived by observing
the drops of rain on a pavement at the commencement of a shower: as the drops multiply, it will be evident to
the eye that their density tends more and more to uniformity.

2Dp2
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Hence we may, if we please, assume that, when a point is taken at random in a plane,
those from which it is taken are an infinite number symmetrically disposed over the plane.

Likewise, points taken at random in a line may be supposed equidistant. And if
random values be taken for any quantity, they may be supposed to form an arithmetical
series, with an infinitesimal difference.

Let us now consider the case of a straight line drawn at random in an infinite
plane: the assemblage from which we select it is, as before, an infinity of lines drawn
at random in the plane. 'What is the nature of thisaggregate? First, since any direction
is as likely as any other, as many of the lines are parallel to any given direction as to
any other. Consider one of these systems of parallels; let them be cut by any infinite
perpendicular. As this infinite system of parallels is drawn at random, they are as
thickly disposed along any part of the perpendicular as along any other; the inter-
sections being in fact random points on the perpendicular. Hence it is easily seen that,
for all purposes of calculation, the assemblage of lines may be thus conceived. Divide
the angular space round any point into a number of equal angles 3, and for every direc-
tion let the plane be ruled with an infinity of equidistant parallel lines, the common
infinitesimal distance being the same for every set of parallels. Or we may suppose one
such system of parallels drawn, and then turned through an angle 3, then through
another equal angle, and so on, till they have returned to their former direction.

If we take any fixed axes in the plane, a random line may be represented by the
equation

Z cos 84y sin §=p,
where p and § are constants taken at random.

There is no difficulty in extending now our conceptlons to points, straight lines, and
planes, taken at random in space.

4. We may take any plane area as the measure of the number of random points
within it: in the case of random lines, I proceed to prove the following important prin-
ciple :—

The measure of the number of random lines which meet a given closed convex plane
boundary, is the length of the boundary.

Draw any system of parallels meeting the boundary, their common infinitesimal
distance being 3p. If we take this distance as unity, the number of
these parallels is AB, a line cutting them at right angles. Let R f ig. 1?
AB=C, and let § be its inclination to any fixed direction in the : :
plane; conceive now a consecutive system of parallels inclined to 7 ;
the former at an angle 8¢, then a third, and so on, till the parallels (”
return to the direction in the figure; then the total number of lines
will be

1 T
), edd;

or, if O be any fixed pole inside the boundary, and OV=p, the perpendicular on the
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tangent to the boundary, § its inclination to a fixed axis, the measure of the number of
lines* is

N:j‘g;"pdé.
0
Now the integral {pdd extended through four right angles gives the whole length of

the boundary, whatever be its nature, provided it be convext.
Hence if L be the length of the boundary,
N=L.

This result may be obtained also as follows. It may be shown very simply by the
above principles that the measure of the number of random lines which meet any finite
straight line of length , is 2« (it may indeed be assumed as self-evident that the number
is proportional to @). Conceiving now the boundary L as consisting of straight elements,
the number of lines meeting any element ds, is 2ds; so that the whole number which
meet the boundary would be 2L; but as each line cuts the boundary in fwo points, we
should thus count each line twice over; hence the true number is L.

Hence if L be the length of any convex boundary, and / that of another, lying wholly

inside the former, the probability that a line drawn at random across L shall also inter-
sect /, is
l
P=7;

It is important to observe that the measure of the number of lines which meet any
non-convex boundary is the length of a string drawn tightly round it ; as is obvious on
consideration. The same is true for a boundary which is not closed.

5. Let there be any two boundaries external to each other: let X be the length of
an endless band passing round both, and crossing between them, and Y the length of
another endless band also enveloping both, but not crossing; then the measure of the
number of random lines which meet both boundaries is X —Y.

It will be easily found from the principles explained above, that the number required
will be the integral {pdf (referred to O as pole), taken for the
left-hand curve from the position RR' of its tangent, to the
position PO; then for the right-hand one from the position P'O
of its tangent, to the position S'S; then for the left-hand one,
from SS' to QO; then for the right-hand one, from Q'O to R'R.
Now the values of these integrals are, drawing the perpendiculars
OV, OW to RR/, S8,

* Tt will be well to remember that this measure of the number of lines, N, means #he actual number multi-
plied by the constant factor 3). Our notation is thus simplified, and no confusion need arise from sometimes
saying ¢ the number of lines,” for shortness, instead of ¢ the measure of the number of lines.” As §f remains
constant throughout cur investigations, henceforth we will denote it by 2.

t As L=s;'€d6, we see that the mean breadth of any convex area is equal to the diameter of a circle whose

circumjference equals the length of the boundary. By breadth is meant the distance between two parallel tangents,
whose direction is supposed to alter by uniform increments.
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1. the mixed line RPO — RV,

2. ., ., SPO —SW,
3. 9 - 9 SQO - SW’
4, ’ ' R'QO —R'V,

and the sum of these is evidently equal to X—7Y.

I will add a different proof of this proposition, deduced from art. 4, as it is interesting
to see our results verified.

For shortness, I will use the symbol N(S) for « the number of random lines meeting
the space S;” and N(S, ') for the number meeting both S and S'.

The number of lines meeting both boundaries is evidently identical with the number
meeting both the mixtilinear figures OPHQ, OP'H'Q’. These two figures together form
the mixtilinear reentrant figure HPP'H'Q'Q, and by art. 4, N(HPPPH'Q'Q)=Y.

Now N(OPHQ)+N(OP'H'Q)=NHPP'H'Q'Q)+N(OPHQ, OPH'Q). But OPHQ,
OP'H'Q being convex figures, the number of lines meeting each is represented by its
length ; therefore

X=Y+4+N(HPQ, HPQ').

The probability that a line drawn at random across a given convex boundary of length
I shall also meet a given exfernal boundary is therefore
X-Y
P="1
6. If two convex boundaries I, I/ intersect each other, in two or more points, it may
be proved in a similar manner that the number of random lines which meet both is
represented by Li41/—7Y, where Y is the length of an endless band passing round both.
Hence the probability that a line which meets L shall also meet L, is
L+L/-Y
pr=—
7. It may easily be proved that the measure of the number of random lines which pass
between two given convex boundaries s

N=PP'4QQ'—arc PQ—arc P'Q/,

where PP/, QQ' are the two common tangents which cross each other.

Thus the number of random lines which pass between the two branches of an hyper-
bola is represented by A, the difference between the whole length of the hyperbola and
that of its asymptotes. This difference, as is known, is given by the definite integral

A= 4a§a\/ 1—¢*sin® 4. d4,
0

. 1
where sin w=7

8. Two lines are drawn at random across a given convex area: to find the probability
of their intersection lying within the area.
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Let AB be the internal portion of any random line crossing the area: the number of
its intersections with gll the random lines in the area is the number of

. . . . . 2AB
those lines which meet it. Now this number is —~ (art. 4); hence

the number of intersections of the system of parallels to AB with all
the random lines in the area, is twice the sum of the lengths of all
these parallel chords divided by 8. But this sum is the area of the
figure (we have taken the common distance 8p of the chords as unity).

Let Q be the area, L the length of the boundary. As, then, 2—;} is the number of inter-
sections for any system of parallels, and the number of those systems is %, the total number

of intersections is -232 ‘But we have thus counted each intersection twice; so that the

32
real number of intersections which fall inside the area Q is 7%2

Hence the required probability is
2%}

=T

. . . .4 L\?
since the whole number of intersections is 1 Kg) .

Thus it is an even chance that two random chords of a circle intersect within the
circle; for any other figure the chance is less than .

If an infinity of lines are drawn at random in an infinite plane, the density of their
intersections (i. e. the measure of the number* of intersections in any given space,
divided by the space) is uniform, and equal to .

9. If an infinity of random lines meet a given area, the density Fig. 4.
of their intersections, at any external point P, is

A=
g=0— sin 4, / o %

where § is the apparent angular magnitude of the area from that \ %
point. e
Conceive an infinitely small circle, or other figure (whose dimensions, however, infi-
nitely exceed dp), at P, and let us calculate the number of the said Fig. 5.
intersections which fall inside this circle. Let the figure represent « o
this circle, magnified as it were ; QV, RW being the tangents PA, PB.
Draw one of the random lines CD, which meet both the circle and
the area , the actual number of intersections which lie on CD will

be 3 N(Q, CD), which is found from art. 5 to be

+(2CD—CH—CI),

* 'We take for this measure the actual number multiplied by 6%, or &* (see note, art. 4).
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or
%]2<2— COS &z— COS (A—oa)).

Hence the actual number of intersections on all the chords parallel to CD is
la(area, of circle) (2— COS o — COS (()—tx)).

Therefore the measure* of the whole number of intersections lying within the circle is
‘]
—lg—(area)j‘ (2— COS ¢ — COS (A—a))daa:(area)(ﬂ—— sin 4),
0

which proves the theorem.

10. The number of the intersections external to the given area is, then, measured by
the integral

{f(¢— sin ¢)ds

extended over the whole plane outside Q; dS being the element of the area. Now
the number of internal intersections is #( (art. 8), and the sum of both is 112, We
“obtain thus, in a singular manner, the following remarkable theorem in Definite Inte-
grals :— ‘ ' _

If 0 be the angle between the tangents drawn from any external point (x, y) to any given
convex boundary, of length L, enclosing an area Q, then

{§ (¢ sin 8)dody=%L—=Q,

the integration extending over the whole space outside 2.

It does not seem easy to deduce this integral, in its generality, by any other method.
It may be verified by direct integration for the cases of a circle, and of a finite straight
line. It forms a striking example of what will doubtless be found, as the study of
Local Probability advances, to be one of its most remarkable applications, viz. the
evaluation of Definite Integrals. All who have studied the subject must have remarked
the variety of ways in which almost every problem may be considered; now it often
happens that a question in which we are baffled by the difficulties of the integration,
when we attempt it in a particular way, may be solved with comparative ease by other
considerations: we can then return to the integrals which we were unable to solve, and
assign their values. I proceed to give some further applications of the above theory to
Integration. .

11. Given any infinite straight line outside a given convex boundary of length I, let

“da be any element of this line; «, 3 the inclinations of da to the two tangents drawn
from it to the boundary, then

m(cos e+ cos 3)da=L.

* We take for this measure the actual number multiplied by 86% or 9 (see note, art. 4).
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Fig. 6.
XNF

It is easy to see from art. 5 that the number of random lines
cutting L., which also meet dz, is dz(cos x4 cos3); now the
sum of all such elements gives the number of lines cutting both
L and the given infinite straight line; that is, L (art. 4). This
integral may be otherwise verified. -

If the boundary L be enclosed within any outer convex boundary, let ds be the differ-
ential of the length of the latter, @, 3 the inclinations of ds to the tangents from it to L,
then we find in the same manner, '

. [(cosa+ cos B)ds=2L,

the integral extending all round the outer curve.
I mention this merely as an illustration ; it is in fact easy to show independently that

L={cos ads={ cos Bds.

12. If an infinite number of random lines pass between two convex areas, the density

of their intersections will be (as in art. 9) at any point R in the Fig' 7.
angle FOG, or in EOH, * e
p=0—sind; . \
and at any point S in the spaces POQ, P'OQ,
| g=7—p— sing;
now the whole number of intersections is (art. 7) measured by = % G

%(PPI+QQ’_PQ_PIQ’)2'
{§(6— sin 6)dS + {[(r—o— sin 9)dS=3(PP'+QQ' - PQ—-P'Q)},
the first integral extending over the infinite spaces FOG, EOH, and the second over
the spaces POQ, P'OQ'.

Thus if § be the angle between the tangents drawn frem any external point to an
hyperbola,

Hence

(06— sin d)dady=34%

where A is the difference between the hyperbola and its asymptotes, and 4 means the
external angle of the tangents, in the cases where they touch the same branch of the
curve, the integral extending over the whole space outside the hyperbola.

Received February 13, 1868.

18. If we consider a system of random lines disposed over the whole surface of an
infinite plane, and a second system all of which meet a given convex area Q within the
plane, and then fix our attention on the infinite system of points in which the latter
system cuts the former, it will be seen that the density of these intersections, at any point
(x, y) exterior to Q, is equal to 24, ¢ being the angle which  subtends at the point

MDCCCLXVIIL 2®
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(#,%); hence 2({ddady represents the number of these intersections which lie on any
given portion of the plane outside Q.

Take now an arbitrary convex boundary surrounding Q; we will calculate in a dif-
ferent way the number of intersections which lie on the annular space between the two

boundaries, and thus arrive at a value for the above definite integral, Fig. 8.
extended over the same annulus. x
Let AD be a random line of the second system, meeting Q; the »

number (within the annulus) of its intersections with the first system =
will be measured by (art. 4) 2AB+2CD; and hence the total number *| S
of intersections of all parallels to AD (between the tangents MN, PQ),
with the first system, will be measured by double the area, cut from the
annulus, between MN and PQ. Hence if © represent the annulus, the actual number
of intersections which lie on those random lines of the second system which are parallel
to those in the figure, is

Ny= %( 20—2 segment MHN —2 segment PKQ).

Making now the parallel tangents MN, PQ revolve by constant changes of inclination,
9, through two right angles, we have for the measure of the total number of intersec-
tions, if @ be the inclination of MN to a fixed line,

N= f (20— 2MHN—2PKQ)do.

But if we make the tangent MN revolve through 4 right angles instead of 2, it will
occupy all the positions of PQ; denoting then the segment MHN by 3, we have

N=27r®—2f "Sde;
)

5‘ fédxdy=7r® —~ 5 "3de.

The mean or average value of the segment 3, as the tangent alters by uniform changes
of inclination, is '
1 2
= y Sde;

we have, then, the following theorem :—
If 6 be the angle subtended at any point (x,y) by @ given convex area Q, then

therefore

~ f bdady==(©—2A),

the integration extending over the annulus between Q and any given exterior convex boun-
dary ; © standing for the area of that ammulus, and A denoting the average area of the
segments cut from the annulus by the tangents to the boundary of Q.
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This theorem gives the value of the integral in those cases where we are able to cal-
culate the value of A: if 3 is constant, we have the theorem :—

Let there be any two convex boundaries so related that a tangent to the inner cuts off a
constant area from the outer. Let 8 be the angle subtended by the inmer boundary at any
external point (X, y); and let A be the difference of the parts into which the annular
space between the two is divided by any tangént to the inmer, then

{fodzdy=a=A,
the integration extending over the whole of the annulus.

For instance, we may apply the theorem to two similar coaxial ellipses. We may
deduce thus the following definite integral,

2R 02— a2l . .
g‘ tan~! (2 vy + bt — dady==abk(x sin® o —a + sin «),

22t —a— 1P
. . . 22 2 . 1. 1
the limits being given by 1< ~5+7%; <#; putting cos go=7%-

In the case where £’=2, the value of the integral is 2zab; that is, the area of the
outer ellipse. ,

14. If we suppose an infinite plane covered with random lines, and then imagine
these divided into two systems, the first comprising all those lines which meet a given
convex boundary, the second all those which do not meet it, and if we now consider the
assemblage of points in which the first system intersects the second, we shall find (as in
art. 9) that the density of these intersections, at any point outside the boundary, is 2 sin 4,
0 being, as before, the apparent angular magnitude of the boundary.

Hence the number of intersections which lie on any given space is represented by the
integral 2({ sin 4dS.

If we now suppose an endless string (of length Y) passed round Fig. 9.
the given boundary (whose perimeter we call L), and if this string
be kept stretched by a moving point which thus traces out a new
contour enclosing the given one (as the outer of any two confocal
ellipses may be generated from the inner), we may estimate in a
different manner the number of intersections which lie on the inter-
mediate annular space, and thus obtain the following value for the
above integral extended over that space,

. §fsin 0a8=1(Y—L).

Let ABbe a line of the first system meeting the two boundaries in A, B; the number
of points in which AB is cut by a system of random lines covering the whole plane is
(art. 4)

2AB
——-

If we subtract from this the number of intersections of AB with those lines which
282
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meet the boundary L, the remainder will be the number of intersections of AB with the
second system of lines above, viz. (art. 6)

‘JAB 1
2P S (2AB4L-Y),

that is, _
1
3 (Y—L).

This is constant for every position of AB; hence the number of intersections lying
on the annulus will be the above constant, multiplied by the number of positions of

AB; now this number is g—SI—J (art. 4) (remembering that for every line AB, there is

also one A'B/, forming a portion of the same straight line). Hence the total number
of intersections is

2
s L(Y—L).

If, then, the integration extend over the annulus,
{sin8.dS=L(Y—L).

This theorem will apply to an ellipse, the outer boundary being a confocal ellipse.
A particular case, which admits of verification by using elliptic coordinates, will be :—
If 6 be the angle which two fixed points F, ¥’ subtend at the element dS,

{Vsin 0d8=8¢(a—c);

the integration extending over an ellipse whose foci are F, I, 2a being the axis of the
ellipse, and 2¢=FF'

The above method will also show that in this case the integral remains unchanged in
value, if it extend over any Cartesian oval whose internal foci are F¥', and whose axis
is 2a¢. An instance of such a Cartesian is a circle from F as centre with @ as radius,
provided @>2¢. The same will appear by means of elliptic coordinates*.

15. I will mention the following integral here, as, though strictly not derived from
the theory which forms the subject of this paper, the prmmple used in obtaining it is,
as in the cases which precede, the calculation of the number of intersections lying on a
given space, of a given reticulation of straight lines.

Given a closed convex boundary without salient points; if we draw an infinity of
tangents to it, each making an infinitesimal angle (3) with the preceding, and consider
the intersections of all these tangents with each other, it will not be difficult to show (as
in art. 9) that the number of intersections lying on any element dS will be

s

# The general integral above admits also of being established by means of a certain generalization of elliptic
coordinates, which defines the position of a point by the sum and difference of two strings, each of which is
attached to a fixed point on a given oval curve; they are then wrapped round the curve in opposite directions,
and leave it as two tangents, meeting and terminating at the proposed point.
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where T, T' are the tangents from dS to the boundary, and § their mutual inclination.

Now the whole number of tangents is g—, and that of intersections 2. We infer
3 X
therefore that

6
it as=oe,

the integral extending over the whole external surface.

If the integral extend over the annulus between the given boundary and an outer line
along which § has a constant value («), then

sin
ﬂ “1“’%, dS=2x (7 —a).

If the same integral extend over the space between the given boundary and two fixed
tangents, including an angle o, its value will be 3(#—w«)®. If it extend over the infinite
angle formed by those tangents produced, its value will be 3a®

If the given boundary contain salient points, then for every such point, where the
bounding line changes direction abruptly through an angle A, a number of the tangents,

2
equal to _‘%, meet at that point; hence a number (%%;) of intersections coincide there,

and consequently we must subtract 1A from each of the above integrals. Hence if
there are any number of salient points A A’ A", &c. in the boundary, the first integral

becomes
]
ﬁ fin? 1S=2q— §3AY,
and likewise for the second.

Thus for a regular polygon of (n) sides, the value is

24° (1 ——l> .
n

If instead of drawing tangents to the given boundary at uniform angular intervals,
we draw a system of tangents whose points of contact are distant from each other by a
" common infinitesimal interval, we shall find that the density of the intersections in this
case varies as

!
,g,gr, sin 6,

where of are the radit of curvature of the boundary at the points of contact of TT': this
gives us the integral

q'PT’ sin § dS=112,

L being the whole perimeter of the boundary, the integral extending over the whole
plane.

Many analytical definite integrals may be deduced by expressing the general theorems
now given, in the language of different systems of coordinates, for various particular
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cases. Thus the first theorem in this article, applied to the ellipse, gives

aQyQ_l_beQ d d .
(PP + ) — 42} VP P —a =T
2 2
the equation of limits being %—l—%g>1.

16. Let there be a closed convex area w, length of boundary 7, en-
closed within another of length L; let § be the apparent magnitude
of » at any external point; by considering two systems of random
lines, one crossing the boundary L, and the other /, and examining
the law of the density of the intersections of the former with the
latter, we arrive at the theorem :—if we put for shortness

4 o—sin e =1,,
(§Ct0s g sy —105—1,)AS + 21 dS =L — 2705

the first integral extending over the whole space outside L, the second over the space
between L. and /.

17. But few problems on random straight lines admit of such simple results and of
such generality as those we have been discussing. In general they can only be solved
for particular forms of the boundaries. However, the above principles, applied to each
particular question, generally suffice to reduce it at least to a problem of the Integral
Calculus. I will give one or two examples.

If two random lines cross a given convex area, the chance of their intersection falling
on any énternal portion of the area w, is evidently (art. 8)

Q7w
=1z
But the chance of the intersection falling on any exfernal area is less easy to find; it
depends on the integral {[(§—sin6)dS extended over that area. Could we succeed in
finding the required probability by any different method, we could give the value of
this integral for any external area.
A line is drawn at random across each of two given convex areas 2, ', external to
each other, lengths of boundaries L, I/ ; to find the chance of their intersection being
outside both areas.

The density of the intersections of the system of random lines Fig. 11.
crossing () with those crossing ', at any point P within Q, is 26,
where § means the apparent magnitude of Q' at P. Within Q/, N -
the density is 2¢. Hence it is easy to see that, as the whole A o

number of intersections is LI/, the required probability is

2 .
p=1—gp ({[¢dS +{f¢as'),
the integrals extending over  and Q' respectively. It is evident that these integrals,
however, can only be evaluated for particular forms of the areas.
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18. The following problems relate to a circular boundary :—

1. A random point falls within a given circle and a random straight line is drawn
across the circle; to find the chance of the line passing within a given distance of the
point.

As the general solution is somewhat complicated, I will take the particular case
where the given distance is the radius of the circle, which will serve equally well as an
example of the application of the foregoing principles.

Let C be the centre of the given circle, P any position of the random point, # the
radius of the given circle; draw an equal circle with P as centre; then
the number of random lines meeting the given circle and passing within
a distance 7 of the point P, is the same as the number of random lines
cutting both circles; this number is measured (art. 6) by the excess of
the two circumferences over an endless band wrapped round them; that
is, putting CP=p,

Fig. 12.

2mr—2p.

If dS be an element of the surface at P, the sum of the favourable cases will be
F:ﬁ(zw—zg)ds=2 f (wr—e).2medg ;
- F=(r—2)2m°.
But the whole number of cases is 277 X 7*; hence the required chance is
p=l-g

I will give another solution of this problem:—Let AB be a position of the random
line ; take MN=v, then all the favourable positions of the random Fig. 13.
point are within the segment EHF ; the number of favourable points T
is therefore N

7*(7—@-+sin ¢ cos @).

We have to multiply this by the differential of CM, and integrate | /
from CM =7 to CM =0, which will give the favourable combinations * [/’ﬂ
for all random lines parallel to AB, passing between C and H;
doubling this, we have the result for al/ lines parallel to AB; that is,

F0=2¢2§0(w—¢+sin @ cos )d.7 cos ¢

=2r3y§(7r—-qo+sin ¢ cos@)sin ¢dg;
0
o Fo=2r(r—3).

Now if the system of lines parallel to AB revolve through two right angles, we have
for the measure of the whole number of favourable cases

F=2zr¥(w—%);
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hence, as before,

The problem in its general form can be solved without any great difficulty by the
same methods. The result may be expressed in this form :—Let D be the given maxi-
mum distance; draw a circle of radius D with its centre on the given circumference ;
let Y be a band enveloping both circles, and 24 the inclination of the two straight por-
tions of this band ; then the probability of the line passing within a distance D of the
point will be

__2m'+27rD—Y cos3f
- Qmr 37

or, if p, be the probability when the point is taken anywhere on the circumference of
the given circle, then the general value of the probability is

cos3

p=pt3;

If a random point and a random straight line be taken within any convex boundary
of length L, the chance that the line shall pass within a distance D of the point, D being
small, is approximately,

=TT

2. If three lines are drawn at random across a given circle, to determine the proba-
bility that their three intersections shall lie within the circle.

Let AB be one of the random lines. The total number of favourable Fig. 14,
triads of random lines, each triad of which includes AB, is the same as
the number of intersections, which fall within the circle, of all random
lines which cross AB. For every such intersection which lies within
the circle, gives a pair of lines meeting AB, forming a triad whose
intersections all lie within the circle. Now if 4 be the angle which
AB subtends at any internal point P, the number of these intersec-
tions will be measured by (art. 9)

N=/{{(¢—sin 0)ds,

extended over the whole circle.

To integrate this, conceive the circle divided into an infinite number of elementary
crescents, by segments of circles on AB; let O be the centre of the segment APB, ¢ its
radius; then the area of the segment APB is, putting AB=2¢,

segment = (7 —0)¢g*4-ag cos ¥, or as gsind=a

x—0

=a’ <§fr70 -+ cot 0) .
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Differentiating this for 4, we obtain for the area of the crescent between APB and the
consecutive arc on AB,

crescent = ng A (1 +(7—0) cot 0)
Hence the number of intersections above AB will be

N=20 "5 (L+(r—0) cot )t

sin®§

282~ T 0T T Sn®0  sm®l d"“m"’ sin?g ' sin®f

N { 0y Ocosbd) & cosf df cosfdl  bcosd i g}
8

All these are elementary integrals, and give (reducing the indeterminate forms by the
usual methods)

N 3 o T—a =¥ ¢ LA

5@ =2 mn®a sina 120 “k+2 sin® «

To find the number of intersections delow AB, change « into #—a; this gives for the
whole number of favourable triads (including AB),

am—o?
- N=24° (3‘5{2‘*‘ sin’a ) ;
or if ¢ be the radius of the given circle, a=c¢sina;
N=2¢*(3 sin’0o—= sin & + oz —a’).

Multiply this by the differential of CM, and integrate from ¢ to —c¢, and we have the

sum of all favourable triads, each of which includes any one of the random lines parallel
to AB,

T
F:Zc”j‘ (8 sin? ¢ — 7 sin &+ ar —&®) sin ade
0

2
=2c (8-—- 5—) .

Multiply this by #, and we have the measure* of the total number of favourable triads:
however, this must be divided by 3, as it is clear we should thus count each triad thrice;
hence total value of

c3
F=% (16 —7);
and the whole number of cases being #(27¢)?, we find for the probability sought,
4 1
P=5—3%

19. An interesting inquiry, though of a more difficult nature than that which has occu-
pied us in this Paper, would be the extension of the foregoing principles to straight
lines and planes drawn at random in space. It involves several intricate and curious
points relating to the general theory of surfaces. With regard to the measure of the
number of random straight lines which meet & given closed convex surface, it is easy to

show that this measure is the surface itself.

* 4. e. the actual number multiplied by &° (as art. 8).
+ It is not unlikely that this result may be obtained in some simpler manner.
MDCCCLXVIIL 2F



198 MR. M. W. CROFTON ON THE THEORY OF LOCAL PROBABILITY.

It may be assumed as self-evident that if space be filled with an infinity of random
straight lines, and they be cut by any infinite plane, the points in which it cuts them are
distributed with uniform density over the plane; and this density will be the same for
any other plane. Hence the number of the random lines which meet any plane area
is proportional to that area. Hence the number meeting any plane element dS of the
surface is proportional to dS; the same is true for every other element; and each ran-
dom line cuts two elements and only two; hence the whole number of lines is propor-
tional to S. ‘ .

We might view the question as follows. The entire body of random lines may be
considered (as in art. 3) as a system of parallels disposed Fig. 15.
uniformly and symmetrically in space, which is afterwards
turned round by infinitely small angular displacements, into
every possible position. Let the figure represent one of these |
systems of parallels meeting the surface S, and of course
bounded by the cylinder, enveloping S, whose generatrix is - et
parallel to these lines. Let Q be the area of the perpendicular section of this cylinder,
then Q is the measure of the number of these parallels. Let 4, ¢ be the angular coor-
dinates of the direction of these parallels, and let them now pass into every possible
angular position; the whole number of lines which meet S will be proportional to

§1Q sin 4dode,
extended through half the solid angular space round a point. We infer from this that

j‘ f Q sin ddédp=FS.

To determine the constant %, we may apply the theorem to any particular case, as a

sphere; this gives k=g We may accept this manner of viewing a system of random

lines, then, as a proof of the theorem in surfaces: —

If Q be the area of the section of a cylinder enveloping a convex surface S; 4, ¢ the
angular coordinates of the generatrix of the cylinder,

3 3 . T
yy Q sin ddddp=58.
0 JO

The measure of the number of random planes which meet a given surface is easily seen
to be (as in art. 4)

N= f Tp sin ddddp,

where p is the perpendicular from any internal point on the tangent plane, and 4, ¢ the
angular coordinates of p. I am not aware that this integral has ever been considered.
It is probable that it admits of some simple geometrical representation, which possibly
will be found to be the length of some closed curve, traced upon the given surface, and
bearing some remarkable relation to the general curvature of the surface.
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It is well to notice, with regard to the applications to integration of the theory laid
down in this Paper, that the theorems thereby deduced in no way depend for their truth
upon the doctrine of Probability, although it has been the occasion which has led to
them. The apparatus of a system of equidistant parallels, revolving through constant
angular displacements, which has been used in establishing their truth, is a strictly
geometrical conception, and which, as here employed, may be viewed as a method in
the Integral Calculus. A simpler species of reticulation, consisting of two systems of
parallels, crossing at a finite angle, has already been used by EisENSTEIN and others in
the Theory of Numbers and in Elliptic Functions.

It will be borne in mind also that this apparatus of lines is used only as a correct and
convenient representation of an infinite system of random lines, for the purposes of cal-
culation. Of course it is not asserted that all those random lines which are parallel
to a given direction will be equidistant, or that there will be none of the random lines
intermediate in direction between § and §+3. Just as an infinity of points arranged
in horizontal rows and vertical columns will faithfully represent, for the purposes of
calculation, an infinity of random points, so will the above apparatus represent the
lines. Other arrangements, in either case, may easily be conceived which will represent
them equally correctly, and which possibly will be found, in certain cases, more con-
venient. Thus if an infinite plane be covered with points arranged symmetrically, the
system of lines obtained by joining each pair of points will, undoubtedly, truly represent
a system of random lines. v

It is unnecessary to point out, that if we can succeed in the difficult inquiry involved
in extending the above methods to space, not only will the theory of probability be
advanced, but various remarkable results in the Integral Calculus may be expected.



